ADDITIONAL QUESTIONS ON CHAPTER 01 - 05

- Q01. (a) Find the radian measure of $-106^{\circ}29'60''$.
- (b) Find the degree measure of 16/5.
- Q02. In a right angled triangle, the difference between two acute angles is $\pi/15$. Find the remaining angles in degree.
- Q03. If $\csc x = -\frac{5}{2\sqrt{6}}$, $x \in \text{III quadrant}$, find the remaining trigonometric functions.
- Q04. Evaluate the followings:

(b)
$$\tan\left(-\frac{16\pi}{3}\right)$$

(c)
$$\cos \frac{7\pi}{12}$$

$$(d) \sin(-765^{\circ})$$
.

Q05. Prove the followings:

(a)
$$\frac{\tan(45^{\circ} + x)}{\tan(45^{\circ} - x)} = \left(\frac{1 + \tan x}{1 - \tan x}\right)^2$$

(b)
$$\frac{\sin(x+y)}{\sin(x-y)} = \frac{\tan x + \tan y}{\tan x - \tan y}$$

(c)
$$\frac{\cos x}{1-\sin x} = \tan\left(\frac{\pi}{4} + \frac{x}{2}\right)$$
.

- Q06. If $\tan x = -4/3$ such that $\frac{\pi}{2} < x < \pi$, find the values of $\sin \frac{x}{2}$, $\cos \frac{x}{2}$ and $\cot \frac{x}{2}$.
- Q07. Solve the followings:

(a)
$$2\sin^2 x + \sqrt{3}\cos x + 1 = 0$$

(b)
$$2\cos^2 x + 3\sin x = 0$$
.

- Q08. By using induction, prove that: $1^3 + 3^3 + 5^3 + ... + (2n-1)^3 = n^2(2n^2 1)$.
- Q09. Let A = $\{1, 2, 3, ..., 14\}$. Define a relation R from set A to A such that R = $\{(x, y): 3x y = 0; x, y \in A\}$. Write its domain, range and co-domain.
- Q10. Examine if the relation $g = \{(2,1), (4,2), (6,3), (8,4), (10,5), (12,6)\}$ is a function or not. Justify.
- Q11. Find the domain of $\frac{x}{\sqrt{x^2-3x+2}}$.
- Q12. Find the range of $f(x) = \frac{x-8}{8-x}$.
- Q13. Write the subset and power set for $\{\phi,\{1,2\}\}$.
- Q14. Show that $A \cup B = A \cap B$ implies A = B.
- Q15. Simplify: $\left(\frac{1}{1-2i} + \frac{3}{1+i}\right) \left(\frac{3+\sqrt{-16}}{2-\sqrt{-16}}\right)$.
- Q16. Find the multiplicative inverse and additive inverse of $-\sqrt{3} + \sqrt{-2}$.
- Q17. Find the modulus, argument and the conjugate of $\frac{2-i}{4i+(i+1)^2}$.
- Q18. Find the polar form of the following:

(a)
$$\frac{16}{1+\sqrt{-3}}$$

(b)
$$\frac{1-i}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}}.$$

- Q19. If $\sqrt[3]{x + iy} = a + ib$ then, show that $\frac{x}{a} + \frac{y}{b} = 4(a^2 b^2)$.
- Q20. For any two complex numbers z_1 and z_2 prove that $Im(z_1z_2) = Rez_1Imz_2 + Imz_1Rez_2$.
- Q21. Find $\sqrt{12-5i}$.
- Q22. If $\sin x = 3/5$, $\cos y = -12/13$; $x, y \in II$ quadrant, find the value of $\cos (x + y)$.
- Q23. Show that $2.7^n + 3.5^n 5$ is divisible by 24.
- Q24. If A and B are two sets containing 3 and 6 elements respectively, what can be the maximum number of elements in $A \cup B$?
- Q25. Prove that: $\cos 5x = 16 \cos^5 x 20 \cos^3 x + 5 \cos x$.

ANSWERS &

Q01. (a)
$$-\frac{71\pi}{120}$$

(b) 183°16′21″ (Approx.)

O02. 51°,39°

Q03.
$$\sin x = -\frac{2\sqrt{6}}{5}$$
, $\cos x = -\frac{1}{5}$, $\sec x = -5$, $\tan x = 2\sqrt{6}$, $\cot x = \frac{1}{2\sqrt{6}}$

Q04. (a)
$$\frac{\sqrt{3}+1}{2\sqrt{2}}$$

(b)
$$-\sqrt{3}$$

$$(c) \frac{1 - \sqrt{3}}{2\sqrt{2}}$$

(d)
$$-\frac{1}{\sqrt{2}}$$

Q06.
$$\sin \frac{x}{2} = \frac{2}{\sqrt{5}}$$
, $\cos \frac{x}{2} = \frac{1}{\sqrt{5}}$ and $\cot \frac{x}{2} = \frac{1}{2}$

Q07. (a)
$$2n\pi \pm \frac{5\pi}{6}, n \in \mathbb{Z}$$

(b)
$$n\pi + (-1)^n \frac{7\pi}{6}, n \in \mathbb{Z}$$

- Q09. $R = \{(1,3), (2,6), (3,9), (4,12)\}$. Domain = $\{1, 2, 3, 4\}$, Range = $\{3, 6, 9, 12\}$ and co-domain = A.
- Q10. Since the first components of ordered pairs belonging to g are 2, 4, 6, 8, 10, 12, 14 which are different and have distinct images i.e., different second components of ordered pairs hence, g is a Q11. $(-\infty,1) \cup (2,\infty)$. function.
- Q13. Subsets: ϕ , $\{\phi\}$, $\{\{1,2\}\}$, $\{\phi,\{1,2\}\}\}$ and power set: $\{\phi,\{\phi\},\{\{1,2\}\}\},\{\phi,\{1,2\}\}\}$.

Q15.
$$\frac{1}{4} + i\frac{9}{4}$$
.

Q16.
$$-\frac{\sqrt{3}}{5} - \frac{\sqrt{2}}{5}i$$
; $\sqrt{3} - \sqrt{2}i$

Q17.
$$\frac{\sqrt{5}}{6}$$
, $\tan^{-1} 2 - \pi$, $-\frac{1}{6} + \frac{1}{3}i$

Q17.
$$\frac{\sqrt{5}}{6}$$
, $\tan^{-1} 2 - \pi$, $-\frac{1}{6} + \frac{1}{3}i$ Q18. (a) $8 \left[\cos \left(-\frac{\pi}{3} \right) + i \sin \left(-\frac{\pi}{3} \right) \right]$

(b)
$$\sqrt{2} \left[\cos \left(-\frac{5\pi}{12} \right) + i \sin \left(-\frac{5\pi}{12} \right) \right]$$

Q21.
$$\pm \left(\frac{5}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\right)$$

Q24. 9.

Classes of Mathematics are conducted by **OP Gupta** at **DISHA College Of Competitions**, Near HP Petrol Pump, Opp. ESIC Dispensary, Thana Road, Najafgarh, New Delhi.

❖ For more

visit www.theOPGupta.WordPress.com